FinishLynx Remote Control Specification

Revised 2022/05/18

Written by Kirk Sigel

Copyright (c¢) Lynx System Developers, Inc.
179 Ward Hill Avenue

Haverhill, MA 01835

Purpose:

This specification is for remotely controlling FinishLynx by issuing
commands through a serial port or TCP socket connection.

Overview:

An application that wishes to direct certain behavior or request certain
actions within FinishLynx can do so by connecting to a predetermined serial
port or TCP port that FinishLynx listens on. Once connected, an application
can send data packets that specify an action FinishLynx is to perform.
FinishLynx will send a successful reply to these data packets when the
action is complete or will send an error reply 1T there i1s a problem.

Data Format Description:

A "request packet™ is a data packet sent TO FinishLynx. A “reply packet" is
a data packet sent FROM FinishLynx in response to a "request packet™.
Request packets and reply packets consist of one or more name/value pairs
separated by semicolons and optionally quoted. The name and value in a
name/value pair are separated by an equal sign. A packet is terminated by a
carriage return and line feed. All characters in a packet are human readable
ASCI1 with the exception of the carriage return and line feed. IT a carriage
return and line feed are sent without any other characters sent since the
last request packet then the last request packet iIs executed again.

Note that all characters sent to FinishLynx are echoed back. Anything you
send to FinishLynx will be sent back to you before the reply is sent. The
reason that the protocol is human readable and that all characters are echoed
back i1s so that the interface can be tested by hand” using a simple serial
port communications program or a simple Telnet program. If you set FinishLynx
to listen on a certain TCP port, for instance, you can then Telnet to that
port and enter commands from the keyboard and watch FinishLynx execute the
commands. This allows you to experiment with how the protocol works before
modifying any of your own software. Note that FinishLynx does not provide any
line editing functions, meaning that, for instance, you cannot use the
backspace key to correct errors in a hand typed request packet.

IT a remote application does not want request packets echoed and/or reply
packets sent then XOFF(13h)/XON(11h) characters can be used to control when
FinishLynx sends characters. For example, beginning every request packet
with an XOFF character will prevent FinishLynx from sending any characters.



Data Format Specification:

<Request Packet>
<Repeat Packet>
<Reply Packet>
<Command Pair>
<Command Value>
<Reply Pair>
<Reply Value>
<Option Pair>

<Command Pair>[<Option Pair>]*<Newline>
<Newl ine>

<Reply Pair>[<Option Pair>]*<Newline>
Command=<Command Value>;

varies

Reply=<Reply Value>;

OK]Error]Unknown

<Option Name>=<Option Value>;

<Option Name> varies
<Option Value> varies
<Newl ine> <0x0d><0x0a>

Note: Any part of the specification contained in brackets and followed by
an asterisk can be present zero or more times. ITf a plus sign follows the
brackets instead of an asterisk then that part of the specification must be
present one or more times.

Event Commands:

Request Packet: Command=EventOpen;[<Option Pair>]*<Newline>
Request Packet Options:

File=<Filename>;
<filename> should have a .evn extension.

Reply Packet: Reply=0k;<Newline>
Example:
Send: Command=EventOpen;File=sample.evn;<Newline>

Recv: Reply=0k;<Newline>

Start Commands:

Request Packet: Command=StartCreate;[<Option Pair>]*<Newline>
Request Packet Options:
Time=<time>;

<time> specifies the Time OF Day (TOD) of the start. Note that the
precision of the start is dictated by the precision of the time given.
IT this option is omitted a manual start is created at the current time.

Offset=<time>;



<time> specifies the start offset.

Key=<value>;
<value> specifies the start ID value.

Reply Packet: Reply=0k;<Newline>
Examples:

Send: Command=StartCreate;Time=12:10:00.0000;<Newline>
Recv: Reply=0k;<Newline>
A start is created with a time of ten minutes past noon.

Send: Command=StartCreate;O0ffset=5.0;<Newline>
Recv: Reply=0k;<Newline>
A manual start is created with a time of 5 seconds before current time.

Results Commands:

Request Packet: Command=ResultsPrint;<Newline>
Reply Packet: Reply=0k;<Newline>
Example:

Send: Command=ResultsPrint;<Newline>
Recv: Reply=0k;<Newline>
The results are printed.

Image Commands:

The coordinate system used for images has i1ts origin in the upper left corner
of the window, with horizontal coordinates iIncreasing towards the right and
vertical coordinates increasing towards the bottom. The first pixel (in the
upper left) has coordinate (0,0) and the last pixel (in the lower right) has
coordinate (<image width>-1,<image height>-1).

Coordinates can be specified in four different ways:

1. IT the coordinate is immediately followed by an "a" (for absolute) then
the value is used directly. IT the value Is a negative number then it is
taken from the end of the legal coordinate range rather than from the
beginning. For example, a coordinate of -la for a value that has a legal
range of 0..99 will translate to a coordinate value of 99. A coordinate
of -5a for a value that has a legal range of 0..500 will translate to a
coordinate value of 496.

2. 1T the coordinate is immediately followed by a percent sign then the value
used is the specified percentage of the maximum legal value. For example,

a coordinate of 25% for a value that has a legal range of 0..200 will
translate to a coordinate value of 50.



3. IT the coordinate is immediately followed by an "r* (for relative) then
the value is added to the current value for that coordinate. For example,
if the cross hash i1s currently at coordinate 50 and a value of 20r is
specified then the new cross hash position will be 70.

4. 1T the coordinate is immediately followed by an "R"™ then the behavior
is the same as for "r" except that it is scaled by the current zoom factor.

ImageGetinfo

Request Packet: Command=ImageGetiInfo;[<Option Pair>]*<Newline>
Request Packet Options:

Window=<window number>;

<window number> specifies which camera window to request information from,
numbering starts at 1. IT this option is omitted then the first window"s
information is returned.

Options=[<bit mask>];

<bit mask> specifies which reply packet option(s) are included. To
include multiple options sum their values. To include all options leave
the <bit mask> blank. IT this option is omitted then the first 7 reply
packet options are included (for backward compatibility).

Reply Packet: Reply=0k;[<Option Pair>]*<Newline>
Reply Packet Options:

Orientation=<orientation>; # Option 1
<orientation> can be either "Left"™ or "Right'.

Zoom=<zoom>; # Option 2
<zoom> is the current zoom level followed by a percent sign.

ImageSize=<width>,<height>; # Option 4
<width> and <height> are the current width and height of the image given
the current zoom level.

Origin=<x>,<y>; # Option 8
<x> and <y> specify the coordinates of the upper left pixel visible in the
window.

WindowSize=<width>,<height>; # Option 16
<width> and <height> are the width and height of the window.

Hash=<x>,<y>; # Option 32
<x> and <y> specify the coordinates of the hash line and cross hash.

Time=<time>; # Option 64
<time> specifies the time at the hash line.

Rate=<rate>; # Option 128
<rate> specifies the frame rate.

FirstTime=<time>; # Option 256



<time> specifies the time of the first frame.

LastTime=<time>; # Option 512
<time> specifies the time of the last frame.

Examples:

Send: Command=ImageGetInfo;Window=2;<Newline>
Recv: Reply=0k;Orientation=Left;Zoom=100%; ImageSize=1116,1000;0rigin=0,105;
WindowSi1ze=440,354;Hash=84,518; Time=14:25:29_9060;<Newl ine>

The current information for window 2 is returned. (Note that a newline was
inserted before the "WindowSize'"™ option for readability. This newline is not
present in the actual reply packet.)

Send: Command=ImageGetInfo;Options=768;<Newline>
Recv: Reply=0k;FirstTime=1:22.1020;LastTime=14:31.1426;<Newline>
The first and last frame times are returned for the first window.

ImageDraw

Request Packet: Command=ImageDraw;[<Option Pair>]*<Newline>
Request Packet Options:

Window=<window number>;

<window number> specifies which camera window to control, numbering starts
at 1. IT this option is omitted then the first window is controlled. If
<window number> is O then all windows are controlled.

Zoom=<zoom>;

<zoom> specifies what zoom level to display the image in. <zoom> can be
“"Enlarge'™ or "Reduce'™, which are equivalent to selecting the "+ and "-"
buttons on the image toolbar. <zoom> can also be a number followed by a
percent sign to directly specify a desired zoom level.

HashTime=[<time>][,<y>];
<time> specifies where to place the hash line. <y> specifies where to place
the cross hash.

HashMove=[<x>][,<y>1;
<x> specifies where to place the hash line. <y> specifies where to place
the cross hash.

Scroll=[<x>][,<y>];

<x> specifies where to scroll horizontally. <y> specifies where to scroll
vertically.
Center=<n>;

IT <n> i1s 1 the hash line will be centered in the window. If <n> is O or 1if
the option i1s omitted the hash line will not be centered.

Time=[<time>][,<n>];
For ldentiLynx, <time> specifies the frame time and <n> a frame offset.

Reply Packet: Reply=0k;<Newline>

Examples:



Send: Command=ImageDraw;Zoom=100%;HashTime=1:23.45,50%;Center=1;<Newline>
Recv: Reply=0k<Newline>

The zoom level is set to 100%, the hash line is moved to the frame closest
to time 1:23.45, the cross hash is placed halfway down the image, and the
image is centered on the hash line.

Send: Command=ImageDraw;HashMove=-1r;<Newline>
Recv: Reply=0k;<Newline>
The hash line i1s moved one frame to the left.

Send: Command=ImageDraw;Zoom=Enlarge;Center=1;<Newline>
Recv: Reply=0k;<Newline>

The zoom level is increased and the image iIs centered on the existing
hash line location.

Send: Command=ImageDraw;HashMove=-1a,0a;<Newline>
Recv: Reply=0k;<Newline>

The hash line is moved to the last frame of the image. The cross hash
is moved to the top of the image.

ImageExport and ImagePrint

Request Packet: Command=ImageExport;[<Option Pair>]*<Newline>
Request Packet: Command=ImagePrint;[<Option Pair>]*<Newline>

Request Packet Options:

Window=<window number>;

<window number> specifies which camera window to export or print,
numbering starts at 1. IT this option is omitted then the first window is
exported or printed.

File=<filename>;

<filename> specifies the name of the fTile for ImageExport. 1T this option
is omitted then the event"s standard name will be used. If <filename> does
not have an extension or has an unknown extension then the extension will be
set to ".jpg” and a JPEG file will be written. IT the extension is ".tga"
then a TARGA file will be written. IT the file already exists it will be
overwritten. This option is ignored for the ImagePrint command.

Time=[<time>][, [<y>]1L[, [<time2>][, [<y2>]111:

<time> and <y> specify which part of the image to export or print. If
<time> and/or <y> are omitted then the current hash line value i1s used. IT
this option is omitted completely then the currently visible Image is
exported or printed. IT <time2> and/or <y2> are included then they specify
the right and/or bottom coordinates and <time> and/or <y> specify the
left and/or top coordinates.

For ldentiLynx, <time> specifies the frame time and <y> a frame offset.

Area=[<left>][, [<top>]L, [<right>][, [<bottom>]]1]1;

<left>, <top>, <right>, and <bottom> specify which part of the image to
export or print. ITf the "Time" option is specified then <left> and <top>
default to -200r and <right> and <bottom> default to 200r. If the "Time"
option is not specified then all four values default to Or.

Reply Packet: Reply=0k;<Newline>



Examples:

Send: Command=ImageExport;File=image;<Newline>
Recv: Reply=0k;<Newline>
The currently visible Image is written to the file "image.jpg".

Send: Command=ImagePrint;Time=;<Newline>
Recv: Reply=0k;<Newline>

The region of image starting 200 pixels left and above the current hash
position and extending 200 pixels right and below the current hash position
is printed.

Send: Command=ImageExport;Area=50r,50r,-50r,-50r;<Newline>
Recv: Reply=0k;<Newline>

The currently visible image (minus a 50 pixel band around the perimeter)
is exported to a file whose name is the same name as the event but with
the extension ".jpg".

ImageExportVideo

Request Packet: Command=ImageExportVideo;[<Option Pair>]*<Newline>
Request Packet Options:

Window=<window number>;
<window number> specifies which camera window to export, numbering starts
at 1. IT this option is omitted then the first window Is exported.

File=<filename>;

<filename> specifies the name of the file for ImageExportVideo. ITf this
option is omitted then the event"s standard name will be used. IT <filename>
does not have an extension or has an unknown extension then the extension
will be set to ".avi™ and an AVI file will be written. IT the Tile already
exists it will be overwritten.

Time=[<time>][, [<offset>][,[<time2>][, [<offset2>]]1];

<time> and <time2> specify the start and end frames of the exported video,
respectively. IT <time2> is omitted then the end frame iIs the same as the
start frame. <offset> and <offset2> specify frame offsets for the start and
end frames, respectively. IT the "Time"™ option is omitted then the currently
selected frames (or all frames) will be exported.

Area=[<left>][, [<top>][,[<right>][, [<bottom>]1]]1;

<left>, <top>, <right>, and <bottom> specify which part of the image frame
to export. IT the "Area'™ option is omitted then the entire iImage frame is
exported. Using the "Area™ option will force FinishLynx to recompress the
video, which can cause the export to take much longer.

Reply Packet: Reply=0k;<Newline>

Example:

Send: Command=ImageExportVideo;Window=2;Time=1:00.00,-10,,10;<Newline>
Recv: Reply=0k;<Newline>

The video in window 2 at 1 minute (starting 10 frames before and going
until 10 frames after) i1s exported.



